AD No. 31225 ASTIA FILE COPY Navy Contract Number N60ri-17, T.O. IV ONR Project Number NR 058 059 Tech. Report No. 12 Project RF-280 # THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION THIS REPORT HAS BEEN DELINITED AND CLEARED FOR PUBLIC RELINIOE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON 175 USE AND DISCLOSURE. BISTRIBUTION STATEMENT A AFPROYED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. #### THE REACTION OCCURRING ON THORIATED CATHODES by Michael Hoch and Herrick L. Johnston TR 280-12 April 1, 1954 Technical Report Cryogenic Laboratory Department of Chemistry The Ohio State University Columbus 10, Ohio #### **FOREWORD** (This work was carried out at The Ohio State University Cryogenic Laboratory under contract with U.S. Navy, Office of Naval Research Contract Number Néori-17, Task Order IV, ONR Project Number NR 058 039, with The Ohio State University Research Foundation. This report covers information obtained during the study entitled: "High Temperature Thermodynamics of Inorganic Substances." It represents the 12th Technical Report of this series. Director - - - Herrick L. Johnston Editor - - - Marjorie Lassettre #### TABLE OF CONTENTS | | Page | |--|------| | ABSTRACT | 1 | | INTRODUCTION | 2 | | APPARATUS AND EXPERIMENTAL PROCEDURE | 3 | | EXPERIMENTAL RESULTS AND DISCUSSION OF DATA. | 4 | | Vapor Pressure Data | 4 | | High-Temperature X-Ray Diffraction Data | 7 | | CONCLUSION | 9 | | ACKNOWLEDGEMENTS | 9 | | REFERENCES | 10 | #### -ABSTRACT The vapor pressure of thorium dioxide was determined by the method of Knudsen, between 2398° and 2677°K. ThO₂ vaporizes mostly undissociated as ThO₂(g), the heat of vaporization being $\Delta H_{298}^{O} = 170 \pm 1$ kcal/mole. Some of the material (2-10%) vaporizes as ThO. No reaction occurs between ThO and W. The study of the reaction Th(i) + ThO(s) \rightleftharpoons 2ThO(s) by a high temperature x-ray diffraction technique showed the formation at 2050°K of solid ThO. The ThO has a cubic, facecentered lattice, with a = 4.31 Å. The formation of thorium on the thoriated cathodes is thus due to the decomposition of the ThO₂ to ThO at 2500°K and above; the ThO disproportionates to Th and ThO₂ on cooling to 2000°K. #### INTRODUCTION The reaction between ThO₂ and W, or the question of what occurs on a thoriated cathode, how the thorium (which is assumed to be the emitter) is formed, is still unsolved, although many investigators have attacked the problem. All the work was done, however, on filaments, and the main interest was to improve the emission. Langmuir¹ reported a heat of vaporization of ThO₂ of 184 kcal and a heat of reduction of 138 kcal. Shapiro² measured rates of evaporation with or without emission and found them equal. He obtained a heat of vaporization for ThO₂ of 171 kcal. Fan³ studied the emission of ThO₂ alone, and of ThO₂ + W, and found them equal. He measured a heat of vaporization of 184 kcal for ThO₂ and 46 kcal for Th. The emission characteristics of thoriated cathodes have been reviewed by Danforth.⁴ In this work we first determined the rate of evaporation of ThO2 by the Knudsen effusion method. The material vaporized was collected on two collectors: a cold collector at room temperature and a hot collector, the temperature of which was about 2000°K. The purpose of the two collectors-was the following: If only molecules which are stable at room temperature (such as ThO₂ or Th) evaporate, then the x-ray diffraction patterns of the material on the two collectors should be identical. If a molecule which is unstable at room temperature (such as ThO) evaporates, on the cold collector we will obtain an amorphous substance due to the rapid cooling of the gas molecule (similar to the case of SiO). If this molecule hits the hot collector, the temperature of which is low enough that the ThO molecule is not stable, but high enough that the ThO molecule can disproportionate to Th and ThO2, then the x-ray diffraction patterns of the materials on the two collectors should be different. The chemical analyses of the two molecules would be identical. The rate of evaporation over a $ThO_2 + W$ mixture was determined in a manner similar to that used over ThO_2 . The reaction ThO₂(s) + Th(1) ThO(s) was studied by taking x-ray diffraction patterns at elevated temperatures. The formation of a new compound is shown by the appearance of a new set of diffraction lines. From the new diffraction pattern the lattice constant and crystal structure of the compound can be determined. #### APPARATUS AND EXPERIMENTAL PROCEDURE Two tantalum Knudsen cells, dimensions 0.5 in, diameter, 0.75 in, high with an orifice diameter of 0.0625 in, were used for the vapor pressure measurements. The area of the orifice was corrected for thermal expansion by using the thermal expansion coefficient of tantalum determined previously in this Laboratory. ThO₂ was introduced into the first cell; after the data or pure ThO₂ were taken, an equimolecular mixture of ThO₂ and W was introduced into the same cell. Into the second cell only the ThO₂ + W was introduced, and data taken. Both cells were degassed for two hours at 2000 C before the runs were made. A new metal vapor-pressure cell was built, similar to the one used on our calorimeter, and shown in Fig. 1. The power was supplied by a 20 kw General Electric heater, equipped with grid control. The temperature was measured with a disappearing-filament optical pyrometer, calibrated against a standard tungsten-ribbon lamp. The standard tungsten lamp had been calibrated by the National Bureau of Standards and, in the range of the present investigation, was reported to have a maxmum uncertainty of 8°. When the cells were degassed, the initial heating was only about 5 seconds (negligible compared to the length of the run), due to the high pumping speed. The power input into the cell was very constant, and possible small temperature fluctuations were masked in the uncertainty of the temperature readings. Thus the temperature was taken as the average of the readings, and straight time was used to compute the pressures. In the temperature range where the experiments were carried out, tantalum, the cell material, has a low though measurable vapor pressure. Blank runs on the empty cells were carried out, and the weight losses of thorium dioxide were corrected for the weight loss of the empty cell. The weight loss of the empty cell was always less than 10 percent of the weight loss due to thorium dioxide. FIGURE 1 **(**`, To correct for the thickness of the effusion hole (.01 in.) all weight losses due to ThO_2 were multiplied by the factor 0.89 = 1.1236.8,9 The cold collector plates were made of pyrex 1.5 in. in diameter with a 0.25 in. hole in the middle. The hot collector was made of tantalum, 0.5 in. in diameter, with several 0.0625 in. holes drilled into it and several slits in the side to regulate its temperature. The material from the cold collector was scraped off, fastened with some pradio cement to a thin glass rod, and x-ray diffraction patterns photographed in the Norelco-Phillips x-ray camera. The evaporating material slowly filled up the holes of the hot collector plates. The material was broken off with a pair of tweezers and put into the x-ray diffraction camera. The high-temperature x-ray diffraction patterns were photographed in our high-temperature camera. The technique used was the the same as that described elsewhere, it except that the x-ray diffraction patterns were obtained in a high vacuum, with an exposure time of 30 minutes. The use of a vacuum was necessary because, at the high temperatures involved, arcing occurred in helium and argon atmospheres. The thorium dioxide was obtained from the Maywood Chemical Works, the thorium from the Fairmount Chemical Co., and the tungsten from the Callite Tungsten Corp. #### EXPERIMENTAL RESULTS AND DISCUSSION OF DATA #### Vapor Pressure Data The experimental data for pure ThO₂ are presented in Table I. and those for the ThO₂ + W mixture are given in Table II. The data from the two tables are plotted in Fig. 2. The pressure was calculated from the rate of effusion, using the equation $p = m\sqrt{2\pi RT/M}$, where p is the pressure in atmospheres, R is the molar gas constant, T is the absolute temperature, m is the rate of effusion in g/sq. cm./sec. and M is the molecular weight of the vapor. FIGURE 2 TABLE I VAPOR PRESSURE OF ThO2 | -log P | 5. 411 | 5, 269 | 4.908 | 4.672 | 4.403 | 4.240 | 3,807 | | |--|--------|-----------|---------|--------|---------|---------|----------|-----| | - I | 5. | າບຸ | 4 | 4 | 4 | 4 | ĸ | | | р
(atm.)
х 10 ⁶ | 3.878 | 5.378 | 12.363 | 21.275 | 39.565 | 57.510 | 155, 839 | | | Evaporation Rate (g/cm²/sec) x 10 ⁵ | 5.7046 | 7, 8506 | 17, 805 | 30,415 | 55, 897 | 80, 859 | 217.02 | | | Wt. Loss (g.) | 0.0250 | 0.0197 | 0.0223 | 0.0573 | 0.0702 | 0.1017 | 0.0683 | | | Area (cm²). | 0.0195 | 0.0196 | 0.0196 | 0.0196 | 0.0196 | 0.0196 | 9610.0 | -,, | | Effective
Time
(Sec.) | 25200 | 14400 | 7200 | 10800 | 7200 | 7200 | 1800 | | | Temp
(°K) | 2398 | 2435 | 2502 | 2539 | 2600 | 2625 | 2676 | | | Run | - | \$ | rὑ | 80 | 4 | 7 | , L | | TABLE II C VAPOR PRESSURE OF Tho2 + W | | | | | | P | | | |----------|-------|-----------------------------|------------|------------------|------------------------------------|----------------------------|--------| | un | Temp. | Effective
Time
(Sec.) | Area (cm²) | Wt. Loss
(g.) | Rate (g/cm²/sec) x 10 ⁵ | P (atm.) x 10 ⁶ | log P | | | 2389 | 25200 | 0.0195 | 0.0228 | 5. 2049 | 3, 532 | 5.452 | | 9 | 2481 | 2400 | 0: 0196 | 0.0116 | 12, 376 | 8. 557 | 5.068 | | ∞ | 2484 | 0006 | 0.0196 | 9610 0 | 12.472 | 8.629 | 5,064 | | ب | 2529 | 4500 | 0.0196 | 0.0166 | 21.132 | 14, 753 | 4,831 | | 3 | 2564 | 3600 | 0.0196 | 0.0283 | 37. 087 | 26.071 | 4,584 | | 7 | 2566 | 3600 | 0.0196 | 0.0166 | 26.402 | 18.567 | 4, 731 | | 4 | 2639 | 2910 | 0.0196 | 0.0397 | 78, 030 | 55,643 | 4, 255 | | 7 | 2661 | 4500 | 0.0196 | 0.0634 | 80, 577 | 57,700 | 4.239 | | | | | | 1 | | | | The rates of evaporation are equal in both cases, indicating that no reaction between W and ThO₂ occurs. The x-ray diffraction photographs taken of the material condensed on the cold collector showed only the ThO₂ pattern. The material from the hot collector showed the ThO₂ pattern very strongly, and the Th pattern weakly. The visual intensity ratio was from 50:1 to 10:1. This indicates that ThO₂ vaporizes as ThO₂(g) with a slight dissociation to ThO. If ThO₂ would vaporize completely as ThO and O, and then recombine on the collector plates, the x-ray diffraction pattern of the material from the cold collector would have, besides ThO₂ lines, a strong amorphous background, which it does not have. No diffraction lines of tungsten or tungsten oxide were found on any collector. To obtain ΔH and the equation for the vapor pressure, our data was treated by a sigma plot. The necessary specific heat data were taken from Kelley¹² for solid ThO₂ (Cp = 15.84 + 2.88 x 10⁻³ T - 1.60 x 10⁻⁵ T⁻²) and we estimated, for gaseous ThO₂, Cp = 10.5 cal/mole/deg. Thus we obtain $\Delta H_{238}^{0} = 170.3$ kcal/mole, and $\Delta H = 172,491 - 5.34 T - 1.44 \times 10^{-3} T^2 - 1.60 \times 10^{-5} T^{-1}$ The vapor pressure can be expressed by the relation $log p(atm) = -37695 T^{-1} - 7.82 \times 10^{-4} T + 12.145$ A comparison of our data with Shapiro's shows that the heats of vaporization agree very well; however, our pressures are about 40 times as large as his. At 2000°K we have 4 x 10⁻⁶ mm and Shapiro has 1 x 10⁻⁷ mm. The discrepancy corresponds to a temperature difference of 200°, due probably to the fact that the loosely attached ThO₂ does not reach the temperature of the heating wire, although the pyrometer gives the temperature of the latter. #### High-Temperature X-Ray Diffraction Data The high temperature x-ray diffraction studies of an equimolar mixture of Th + ThO₂ showed, at 1850°C, the almost complete disappearance of the ThO₂ and Th diffraction line and the appearance of a new set of diffraction lines. On cooling TABLE III X-RAY DIFFRACTION LINES OF ThO AT 1850° C ($a_{\circ} = 4.31 \text{ Å}$) | sin ² O | | d(in A) | Indices h, | k, l | |--------------------|---------|----------|------------|---------| | . 0967 | | 2. 47 | 1,1,1 | · · · · | | .1280 | | 2, 14 | 2,0,0 | | | . 2540 | | 1.52 | 2, 2, 0 | | | . 3491 | * | 1.30 | 3, 1, 1 | | | . 3785 | ******* | 1. 25 | 2, 2, 2 | | | . 5238 | | 1.06 | 4,0,0 | | | . 6229 | | . 974 | 3,3,1 | - Fair | this new set of diffraction lines disappeared and the Th and ThO₂ pattern reappeared. The new diffraction lines could be indexed with a face-centered cubic pattern with $a_0 = 4.31$ Å. Interplanar distances are given in Table III. This new diffraction pattern is that of thorium monoxide, indicating that above 1850° C the reaction ThO₂(s) + Th(1) 27hO(s) goes to the right. #### CONCLUSION We can now answer the last question, what happens on a thoriated filament, when it is activated at 2600°K, then cooled to 1800°-1900°K. At 2600°K some of the ThO₂ dissociates to gaseous and solid ThO, which disproportionates to Th and ThO₂ on cooling to 1900°K. For the heat of reduction of ThO₂, Langmuir¹ gave 138 kcal. The heat of formation of ThO₂ from Th and O₂ is 293 kcal. Thus the value of 138 kcal is very probably for the reaction $ThO_{2}(s) \longrightarrow ThO(s) + \frac{1}{2}O_{2}(g)$ #### ACKNOWLEDGEMENTS We wish to thank Robert W. Mattox and David P. Dingledy, who helped with the vapor-pressure measurements. #### REFERENCES - 1. I. Langmuir, Phys. Rev. 22, 357 (1923). - 2. E. Shapiro, J. Am. Chem. Soc. 74, 5233 (1952). - 3. H.Y. Fan, J. Applied Phys. 20, 682 (1949). - 4. W. E. Danforth, Advances in Electronics 5, 170-210 (1953). - 5. M. Hoch and H. L. Johnston. J. Am. Chem. Soc. 75, 5224 (1953). - 6. J. W. Edwards, R. Speiser, and H. L. Johnston, J. Applied Phys. 22, 424 (1951). - 7. M. Hoch and H.L. Johnston, to be published. - 8. P. Clausing, Ann. Physik. 12, 961 (1932). - 9. S. Dushman, Scientific Foundations of Vacuum Technique, John Wiley and Sons, New York, N. Y., 1949, 96 pp. - 10. J.W. Edwards, R. Speiser, and H.L. Johnston, Rev. Sci. Instr. 20, 343 (1949). - 11. M. Hoch and H. L. Johnston, TR 280-13, this contract. - 12. K. K. Kelley, "High Temperature Heat Content and Entropy Data for Inorganic Compounds," Bur. of Mines Bull. 476 (1949). - 13. E. J. Huber, C. E. Halley, Jr., and E. H. Meierkord, J. Am. Chem. Soc. 74, 3406 (1952). # DISTRIBUTION LIST FOR TECHNICAL REPORTS Noon-17 Task Order IV Office of Naval Research NR 358 039 | Addressee | | No. | of Co | pies | |---------------------------------------|---|-----|--------|------------| | | | | | | | Commanding Officer | | | 1 | | | U.S. Navy Office of Naval | Research | | | | | Branch Office | | | | | | 495 Summer Street | | | | | | Boston 10, Mass | | | .41 | t core t | | | | | 4 . | | | Commanding Officer | | | 2 | | | U. S. Navy Office of Naval | | | | | | Branch Office | | | | | | The John Crerar Library | Building | | | | | Tenth Floor, 86 E. Rando | | | | | | Chicago I, Illinois | | | 7-12-1 | | | | | | | | | Commanding Officer | | | 1 | | | U.S. Navy Office of Naval | Research - | | - | To be seen | | Branch Office | | | | 50 | | 1030 N. Green Street | | | | | | Pasadena 1, California | | | | | | anda arm idi ana eeg., 199 | | | | 9.88 | | Commanding Officer | | | 1 | | | U.S. Navy Office | | | | | | Branch Office | | | | | | 801 Donahue Street | | | | | | San Francisco 24, Califor | nia | | | | | | | | | | | Commanding Officer | * | | 1 | N 20 | | U.S. Naval Ordnance Test | Station | | | | | Inyokern, China Lake, Ca | lifornia | | | | | | | | | | | Commanding Officer | . * | | 1 | | | Naval Powder Factory | | | | | | Indian Head, Maryland | | | | | | | | | | | | Addressee | No. of Copies | |---|---------------| | Office of Naval Research 346 Broadway New York 13, N.Y. | 1 | | Office of Naval Research Navy Department Washington 25, D.C. Attn: Project Status, Code N482 | 2 | | | | | Officer-in-Charge Office of Naval Research, Branch Office Navy No. 100 Fleet Post Office New York, N.Y. | 2 | | Chief of Naval Research | 2 | | Office of Naval Research | | | Washington 25, D.C. | | | Attn: Chemistry Branch | | | Chief of the Bureau of Aeronautics | 2 | | Navy Department | | | Washington 25, D.C. | | | Attn: Code TD-4 | | | Chief of the Bureau of Ordnance | 2 | | Navy Department | | | Washington 25, D.C. | | | Attn: Code Rexd | | | Chief of the Bureau of Ships | 2 | | Navy Department | | | Washington 25, D.C. | | | Attn: Code 330 | | | Director, Naval Research Laboratory Washington 25, D.C. | 6 | | Attn: Tech. Info. Officer | | | • | | |--|----------------------| | List Revised 10/1/53 | RF Project 280 | | Addressee | No. of Copies | | Director, Naval Research Laboratory | 2 | | Washington 25, D.C. | | | Attn: Chemistry Division | | | Office of the Quartermaster General USA | 1 | | Research and Development Branch | • | | Chemistry and Plastics Section | | | Washington, D.C. | | | Attn: Mr. Wm. McC. Lee, Chief | | | | | | Joint Research and Development Board | i | | 1712 G Street, N. W. | | | Washington, D. C. | | | Attn: Mr. R. L. Clark, Program Division | | | | heart and the second | | Research and Development Group | | | General Statt, Department of the Army | 34 | | Washington 25, D.G. | | | Attn: Dr. W. T. Read, Scientific Advisor | | | Attn. Dr. W. I. Read, Defending Advisors | | | Research and Development Board | | | Pentagon, Room 3E123 | | | Washington 25, D.C. | | | | | | Attn: Technical Reference Section | | | | | | Commanding General | | | Army Air Forces | | | Pentagon Bldg. | | | Washington 25, D.C. | | | | _ ***. | | Commanding General | 3 | () Air Materiel Command Wright-Patterson Air Force Base Dayton, Ohio Attn: Office of Air Research (MCRRXS) Power Plant Laboratory (MCREXP-3) Central Air Document Office (MCLDSD) | | Addressee | rate and | • | No. | of | Cop | ies | |---|--|----------|---------------|----------|-----|-----------------|---------| | | National Bureau of Standards | | | | 1 | | | | | Thermochemistry Laboratory | - | | . " | | 7.01 | | | | Washington 25, D.C. | | | | | | | | | Attn: Dr. F. W. Brickwedde | | | | | | | | | | | | | | | | | | Aerojet Engineering Corporation | | | | 1 | | | | | Azusa, California | | 5 5. | | | | | | • | Attn: Dr. F. Zwicky | | | 4.1 | | 13 | | | | 1. 원보건(- <u>원보</u>) ## 11 - 1. | | | | | | | | _ | Battelle Memorial Institute | | | | 1. | | | | | 505 King Avenue | | | | | | | | | Columbus 1, Ohio | | 2: | · | | | | | | Attn: Mr. J. B. Holding | | | | | | 4 | | | | | | | | | | | | Los Alamos Scientific Laboratory | | in the | Sand 4 | 1 | i
Marie este | 1 | | 9 | P.O. Box 1663 | | Great Andrews | \$ 178 P | 77. | - 10 | - 72 | | | Los Alamos, New-Mexico | | | | | - | | | | Atn: Dr. J.F. Lemons | 1 | 1,000 | 77 | | | | | | | | | | 1 | | 1 5 7 | | | California Institute of Technology | | | | 1 | | · · · · | | | Jet Propulsion Laboratory | | | | | 1 | - | | | GALCIT Collinate | | | 1 | | 3. | | | | Pasadena 4, California | | | | | | | | | Carregia Institute of Tachrology | | | | , | | | | | Carnegie Institute of Technology Department of Chemistry | | ÷ | | ī | | | | | Metals Research Laboratory | | | | | | | | | Pittsburgh, Pennsylvania | | | | | <u>.</u> | | | | Attn: Dr. E. Birchenall | | 12 | | | | | | | Helli, Di, E. Direnenal | | | | | | | | | Carnegie Institute of Technology | | | | 1 | | | | | Department of Chemistry | • | | | - | | | | | Pittsburgh 13, Pennsylvania | | • | | Ξ., | | | | | Attn: Dr. F.D. Rossini | | | | | | | | | | | | | | | | | | John Hopkins University | | | | 1 | | | | | Applied Physics Laboratory | : | | | | | | | | 9621 Georgia Avenue | · - | | | - | | | | | Silver Springs, Maryland | e ê | | | | | | | | Attn: Dr. L.R. Hofstad | | | | | | | | Addressee | | No. | of C | opies | |-------------------------------------|--------------------|---------------------------------------|---------|--| | Princeton University | | | 1 | | | Princeton, New Jersey | • | | | | | Attn: Project SQUID | | | | A.c. | | Attit. 110ject bgob | | | | | | Ohio State University Research Foun | dotion | 200 | 10 | 9 | | | dation | | | | | Columbus 10, Ohio | | | | ****** | | | | | | | | Ohio State University | 32 | - | · | | | Department of Chemistry | | | | nor en 1 | | Columbus 10, Ohio | | | | | | Attn: Prof. H. L. Johnston | | | - | | | | | Y | , - · · | 127 | | ASTIA Document Service Center | | 3 40 | 5 | 400 | | Knott Building | | | * 27 | | | Dayton 2, Ohio | | | | . " "(<u> </u> | | | and the second | | | | | Office of Technical Services | 7.1. | · · · · · · · · · · · · · · · · · · · | | | | -Department of Commerce | · Victorial Street | | | ten d | | Washington 25, -D. C. | | production of | | | | | | | | 100 | | Office of Secretary of Defense | | 1 | ो ः | | | Pentagon, Room 3D1041 | | | | | | | The second section | | | | | Washington 25, D.C. | | | | | | Attn: Library Branch (R and D) | | | _:_ | | | | | | | | | Dr. A.D. Horney | | | | | | Office Scientific Research USAF | · · | | 1 | | | R and D Command, Box 1395 | | | , | ` | | Baltimore, Maryland | | | | | | | | | 7. | . 8 | | Dr. C. W. Beckett, Acting Chief | 16 | | 1. | ************************************** | | Thermodynamics Section | | | | | | National Bureau of Standards | | | | | | Washington 25, D.C. | fine . | | | | | | | | | ÷ | | Defense Research Member | | | 1 | | | Canadian Joint Staff | | | | | | 1746 Massachusetts Ave., N.W. | | | | | | Washington, D.C. | | | | 9.5 | | meaningion, D. C. | | | | | | Addressee | | | | No. of | Copies | |--------------------|-----------|---|-----|--------|-------------------------| | Naval Ordnance La | aboratory | | | 1 | | | White Oak | | • | | | | | Silver Spring, Man | ryland | | *** | | $\mathcal{F}_{i}^{(i)}$ | | Attn: HL Division | | | , | | | | _ | | | | | | | Naval Ordnance La | aboratory | | | 1 | 7 | | White Oak | | | 172 | * * | | | Silver Spring, Man | ryland | | | | |